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On the Optimal Location of Vibration Supports

B. P. Wang, W. D. Pilkey
University of Virginia

ABSTRACT

The problem of optimal positioning of vibration supports to
raise the fundamental natural frequency of a system is studied. It
is established that for the optimal locations criterion the
corresponding lowest antiresonant frequency is a maximum. A numerical
example illustrates this criterion.

1. Introduction

Intermediate supports are often introduced in engineering structures
to increase the resonant frequencies of the system as well as to support
weights. These supports, when realized by actual structural components,
are elastic supports. Thus, the problem of designing vibration supports
to raise the fundamental frequency involves both finding the location
and the required stiffness of the supports.

In an earlier paper, Bezler and Curreri [1] studied the desian

of vibration supports for piping systems. They used the transfer
matrix method to study a spring supported cantilever beam and a spring
supported “L"” bend. They found the optimum spring location, i.e.,

the most effective location to put a spring to increase the fundamental
frequency, from numerical experimentation. They concluded that a "near
optimal” position for a flexible spring is at a node of the second
mode. Por a rigid support this would be the optimal location.

In the present paper., a criterion for selecting the optimal spring
locations will be derived. This criterion can also be used to compare
the relative effectiveness of sets of proposed support locations.

2. Problem Pormulation

Por a multiple-degree—of-freedom. undamped system with a spring
introduced at dof J, the frequency equation is

+ RJJ(w) = 0 (1)

ol

where RJJ(w) is the receptance of dof J. Equation (1) can be

derived using the receptance method [2]. Alternatively, it can be
found by considering the addition of a spring to a system as a local
modification [(3,4.5]. The receptance RJJ(w) can be expressed in modal
summation form as
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where w! is the natural frequency of the fth mode of the unsupported

system. (pt} is the corresponding eigenvector, pJ' is the Jth

T
component of (p'). and G! - (p!) [m](pl) is the generalized mass of the
tth mode. Thus. for any given spring rate k. Eq. (1) along with Eq. (2)
can be used to solve for the new frequencies w. The natural frequen-—
cies of the supported system increase as the spring rate increases.
In the limit. as k approaches infinity, i.e.. as the support becomes ideally
rigid. the frequencvy equation becomes

RJJ(U) = 0 (3)

(J) Accessien por

(J)
Denote the lowest w that satisfies Egq. (3) as a . Then a

is the lowest antiresonant frequency of dof J. That is. a(J’ is the gfls GRA&E'
highest fundamehtal frequency achievable when the support at dof J Ué:ﬁ.:::esd

becomes rigid. It follows from the eigenvalue separation broperty JJStificnzxon_

fe]. that a(J‘ €‘w_, where w_ is the second natural frequency of the |™™——~ ____ -
unsupported system. Thus, hE?CMOosing dof J for a rigid support as B?*u§~__‘ N
a node in the second mode of the unsupported system. we have AP . .QQ"tibut;;;;h‘u “‘
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w_. which is the maximum obtainable fundamental frequency. This

v

result has been known for some time [1]. .l lloang, -
e Sreeiad
Now consider the case of introducing s springs at dof Jl,Jz...JsZ ;
Pollowing the procedure of Ref. 5., the frequency equation of the .
supported system is given bv L |} “
ifiﬁhrﬂ~ R
A i :
det([1) + [R}[aK])) = O (4) V.S ;
Ay - . //
where [I1 is an sxs identityv matrix
[R] is the receptance matrix associated with the dof
Jl. Jz....Js.. i.e.,
A
R,,. =R (5)
ij J.J
- 1 j
. ok
3 1
) ak
A 2
. [AK] = .. = an sxs diagonal matrix p
: ak ;
s

Aki is the spring rate of the support at dof 3J.
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In the limiting case when all Akj - @, Eq. (4) becomes

det(R]) = 0 (6)

(J )
Let A ® be the lowest root of Eq. (6). Then the optimal support
(J )
locations will be where a ¥ is a maximum. We are now in a position
to establish a criterion for optimal support locations,

3. Maximum Antiresonant Prequency Criterion

Por given sets of support locations. the best set of
locations is where the corresponding lowest antiresonant
frequency is a maximum.

We will call this criterion the Maximum Antiresonant Prequency
Criterion (MAPC). To find the antiresonant frequency. one can eithex

solve an eigenvalue problem of order (n-s) or solve the nonlinear Eg. (6).

4. Numerical Example

To illustrate the basic contention of the MAFPC criterion.
consider the simply supported beam of Fig. 1. The fundamental
frequency of this beam is 15.71 Hz. It is desired to introduce two
intermediate supports to increase the fundamental natural frequency
to above 25 Hz. For this example it is practical to restrict the
support locations to two possible sets of positions, say
A lx1 = _1L. xz = 0.5L) and B (xl = 0.34L, xz = 0.67L).

For this case with two supports. we have

N
(aK] = | l (6)
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It is convenient to calculate the elements Rii with a modal
summation. Thus. =

A
Rij - R(xl.xz)

ﬂi(xl)pl(xz)
2 - 2
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2.54m (100 in.)
7
69 GPa (10° psi)

2
_ k lb-sec )

p = 8748.73 ;ﬁ (0.01 =2235-

I = 4.1623x10"° o* (10 in.%)

Figure 1 A simply supported beam




where. for a simply supported beam.

lrx

P!(xl) = gin L

[ 1
[ G: = 1/2 pL

| o _am Jm
L2 fo)

In the numerical calculation n = 20 is used. or. in other words. 20
modes are used to evaluate the receptances in Eg. (8). The
frequency determinant of Eq. (6) gives

(A)
f1 = fundamental natural fregency for rigid supports at

xl = 0.1L. xz = 0.5L
= 70.9 Hz

(B)
3 B. fundamental natural frequency for rigid supports at

1
= 0.34L. = 0.6
xl 0.34L xz 0.67L
= 180.1 Hz
{

Since t‘1 B> > fl(n)
effective than location pair A in raising the fundamental frequency
of the system.

, we conclude that the location pair B is more

To check the above Droposition, we will compute the fundamental
frequencies of the spring supported beam for the special case of equal
spring rates. The resuls are summarized in Table 1. Alternatively,we
can compute the required (equal) spring rates for both springs for
given iundamental frequencies. The results are summarized in Table 2.

_ We observe that to raise the fundamental frequency above 25 Hz.
F springs with rates of about 1.23 x 106 N/m (7000 1lb/in) are needed at

location x1 = 0.1L and xz = 0,5L, while less stiff sprinas with rates

! of 0.88 x 106 N/m (5000 1b/in) are needed if they are located at x1 -

! 0.34L. x, = 0.67L.
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§ Table 1

Natural Frequencies for Simply Suyvo:ted Beam with Two Equal

Intermediate Springs "
F
Spring Fundamental Natural Frequency of the o
Stiffness Supported System (Hz) :
N/m /in.) X =0, . - = . = 0.
(1b p = 0-1L. x, = 50 x, = 34. x, = 0.67L }
B
17513 {100) : 15.88 15.95
é 87565 (500) 16.67 16.88 -
| 175130 (1006) 17.38 17.98
350268 (2000) 18.90 20.00 ' ]
525390 { 3000) 20.30 21.81 - i
700520 ( 4000) 21.61 23.48 -
875650 { 5000) 22.82 25.05 )
1751300 (10.000) 28.07 31.72 1
© 76.9 180.1 '
¥
L)
Table 2
Required Spring Rate to Achieve Prescribed Natural Frequency
Fundamental Required Spring Stiffness (1lb/in) for Springs at
Natural x1 = 0.1L. xz = 0.5L x2 = 0,34L. xz = 0.67L
Frequency (Hz) N/m (1b/in) N/m (1b/in) )
16 29238 (166.95" 21220.5 121.17
17 133608 (762.91) 968962.7 553.09 '
18 244632 (1396.86) 177135 1011.45 !
19 362386 (2069.24) 262047 1496.3
20 486935 (2780.42) 351610 2007.71 .
2% 1214360 (6934,07) 869482 4964 .78 ’ _
30 2125640 (12137.50) 1505170 8594 .61 ;




Conclusion

In summary. a simple criterion has been derived that will allow a
designer to choose the optimal locations for placing vibration
supports. This will narrow the desian problem to that of determining
the required stiffness to achieve a desired fundamental natural
frequency.
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